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SUMMARY. One important component of model selection using generalized linear mod-
els (GLM) is the choice of a link function. Approximate Bayes factors are used to assess
the improvement in fit over a GLM with canonical link when a parametric link family is
used. For this approximate Bayes factors are calculated using the approximations given in
Raftery (1996), together with a reference set of prior distributions. This methodology can
also be used to differentiate between different parametric link families, as well as allowing
one to jointly select the link family and the independent variables. This involves comparing
nonnested models. This is illustrated using parametric link families studied in Czado (1997)
for two data sets involving binomial responses.
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1. Introduction

To find an appropriate generalized linear model (GLM) for regression data involves choos-
ing the independent variables, the link function and the variance function (McCullagh and
Nelder (1989)). Typically many different models have to be investigated and compared us-
ing individual significance tests based on the asymptotic distribution of the deviance. As
pointed out in Gelfand and Dey (1994) and Raftery (1996) this strategy cannot be used
for comparing nonnested models. In addition, adjustments for multiple tests as well as
power considerations are usually ignored. A Bayesian approach can avoid these difficulties
and therefore Raftery (1996) developed approximate Bayes factors for GLM’s based on the
Laplace method for integrals. These approximations require only the maximum likelihood
estimate (MLE), the deviance and the observed or expected Fisher information. Kass and
Raftery (1995) and Han and Carlin (2001) review Bayes factors and discuss different ways
to calculate Bayes factors.

In this paper, we extend the approach taken by Raftery (1996) to calculate approximate
Bayes factors for GLM’s with a parametric link function. Even though GLM’s with canonical
links (for definition see McCullagh and Nelder (1989)), such as the logit link in binomial
regression, guarantee maximum information and a simple interpretation of the regression
parameters, they do not always provide the best fit available to a given data set. Link
misspecification can lead to substantial bias in the regression parameters and the mean
response estimates (see Czado and Santner (1992) for binomial responses). One common
approach to guard against link misspecification in generalized linear models is to embed the
canonical link in a wide parametric class of links & = {F(-,¢), ¢ € ¥}, which includes the
canonical link as a special case when 1 = 1)5. Many such parametric link classes for binary
regression data have been proposed in the literature. Montfort and Otten (1976), Copenhaver
and Mielke (1977), Aranda-Ordaz (1981) , Guerrero and Johnson (1982), Morgan (1983) and
Whittmore (1983) proposed one-parameter families, while Prentice (1976), Pregibon (1980),
Stukel (1988) and Czado (1992) considered two-parameter families. Link functions for the
non-binary case were studied by Pregibon (1980) and Czado (1992, 1997).

With the multitude of link families to choose from, the Bayes factor approach is able to
compare different link families, regardless of whether they are nested or nonnested. We will
illustrate this ability by using the two parameter link family suggested by Czado (1997) in
several data sets. In addition, we are able to assess jointly the choice of the link family and
of the set of independent variables.

In Section 2 we define and discuss GLM’s with parametric links, while in Section 3 the



calculation of approximate Bayes factors including the choice of priors will be discussed.
Applications will be given in Section 4 and Section 5 will provide a summary and discussion
of the method presented.

2. Generalized Linear Models with Parametric Links

The following model for regression data with response Y; and independent variables X; =

(i1, xip) for i =1, -+, n will be used:

1. Random Component: {Y;,1 < i < n} are independent and have a density of the

form

[yiei - b(ez’)
a(9)

for some specified functions a(-),b(:) and ¢(-). The scale parameter ¢ is allowed to be

fyi (yla eia ¢) = €xp + c(yia ¢)]’ (21)

known or unknown.

2. Systematic Component: The linear predictors n,(8) = o+ 1z +- - -+ Fpxip for 1 <
i < n influence the response Y;. Here 8 = (5, - , 5,) are unknown regression param-

eters.

3. Parametric Link Component: The linear predictors 7;(3) are related to the mean
pi of Y; by p; = F(ni(B), 1)) for some F(-,¢) in § = {F(-,¢): ¢ € U} .

We will restrict attention to link families & which contain only strictly monotone con-
tinuous functions F'(-,1). Note that in conventional GLM notation the link g is equal to the
inverse of F'. An unknown scale parameter ¢ in (2.1) is typically estimated by an appropriate
moment estimator involving the Pearson x? Statistic (McCullagh and Nelder (1989)). For a
fixed link parameter i) we remain in the class of GLM’s, while this is no longer true if the
link parameter i) and the regression parameter B are jointly estimated by the data. Czado
and Munk (2000) show that the joint MLE 6 = (B, 1/;) of § = (B,) is strongly consistent
and efficient under regularity conditions.

As in the case for Box-Cox transformations (Box and Cox (1964)) one has to decide
whether to make inference conditionally on an estimated link parameter or not. In the Box-
Cox controversy, Hinkley and Runger (1984) and Box and Cox (1982) argued for following
a conditional approach, while Bickel and Doksum (1981) and Carroll and Ruppert (1981)
advocated an unconditional approach. We follow the arguments given in Draper (1995) and

are interested in assessing model uncertainty.



We will illustrate our approach by using the link families suggested by Czado (1997).
They allow separate modifications of the left and /or right tail of the link function and exhibit
low variance inflation (Taylor (1988),Taylor et al. (1996)) for the regression parameters when
the link is estimated from the data. This is due to the fact that the parametrization is locally
orthogonal (see Cox and Reid (1987)). In addition, they are location and scale invariant (see
Czado (1997)). For GLM’s with parametric links they are defined as follows:

Error Parameter | Canonical Link Family
Distribution | Restriction | Link S={F(,y):¢y eV}
Normal i real F(n)=n F(n,v) = h(n,v)
Binomial pe (0,1) | Fn) = 52U | F(n,¢) = resies
Poisson p>0 F(n) =exp(n) | F(n,¢)=exp(h(n,))
Gamma p>0 | Fm)=n=" | F(nv)=Ilexp(h(n,))]™
Inv. Gaussian uw>0 F(p)=n" F(n,v) = lexp(h(n,v))]~*°

where h(n, ) is one of the following functions:

(ntD¥1-1 .
. = ifnp >0
Both tails:  hy(n,% = (Y1,92)) = (,,,}fll)wg,l ) (2.2)
— otherwise
(n+1) 1

Right tail: A (n, ) =4 T o 1120 (2.3)

n otherwise

: U] ifn >0
Lef I: = . 2.4
eft tal hu(n, 2) { _(*ﬂiﬁ‘p—%l otherwise (24)

It should be noted that the parameter restriction for the mean response makes a right tail
modification for the Poisson and a left tail modification for the Gamma and inverse Gaussian
cases the only sensible modifications to be considered. In all other cases all modifications of
the link function are allowed. In particular, (2.4) is a special case of (2.2) with ¢ = (1, v).
Similarly (2.3) is a special case of (2.2) with ¥ = (¥1,1). As 1) increases the right tail of
G(-,v) becomes lighter, while an increasing 1, makes the left tail of G(-,) lighter. The
specification (2.3) is asymmetric if 1; # 1, while the specification ((2.4)) is asymmetric if
(19 # 1). The both tails specification (2.2) is asymmetric if 1); # 1.

3. Approximate Bayes Factors for GLM’s with Parametric Link
We are interested in assessing the evidence for a GLM with a noncanonical link as against
the same GLM with a canonical link using Bayes factors. For this, we denote by M, a GLM

with a fixed link parameter ¢ for a given set of independent variables, while M, denotes



the same GLM using the canonical link. We denote the regression parameter corresponding
to model My by 3, to indicate that the regression parameters are on different scales for

different 1’s. We are interested in the Bayes factor for model M, against model M, given

the data Y = (Y3,---,Y},), which is defined as the ratio of posterior to prior odds, namely
pr(Y | My)
By :=———, 3.1

the ratio of the integrated likelihoods. In equation (3.1),

pr(Y | My) = / pr(Y My, By)p(By| M, )dB,, (3.2)

where (3, is the corresponding regression parameter in Model My, and p(8,|My) is its prior
density in model M. Note that M, corresponds to M, with ¢ = 1.

The Bayes factor is a summary of the evidence for M, against M. provided by the
data. Sometimes it is useful to consider 2log B,;,, which is on the same scale as the familiar
deviance and likelihood ratio test statistics. In this paper we follow Raftery (1996) by using
the rounded scale given in Table 1 of Raftery (1996) for interpreting By or 2log By.

This approach allows us to compare different parametric link families as follows. Let M)
denote a GLM using a link family indexed by the link parameter § and construct By in a
similar fashion as By. The quantity %‘: then provides a summary of the evidence for model
M,, against model My given the data and the same set of independent variables. In a similar
way we can construct comparisons of models with different sets of independent variables and
link parameters.

For the link families given in Table 1 it is also of interest to assess whether a right
tail, left tail or a both tail modification is needed. For this we can compare By, (By,) and
Bv,b:( ba) for individual link parameter values or construct overall Bayes factors for each

tail modification, given by

Both Tails: B, = / By gy P My_ ) )0 (3.3)
Right Tail: B, = / By pr(th1| My, )dy (3.4)
Left Tail : Bl = /B¢2p’l"(¢2|M¢2)dw2, (35)

where pr(¢|M,¢:(1/}1 W)), pr(1n|My,) and pr(is|My,) denote the corresponding prior densi-

ties for 4,1, and s, respectively. If the link parameter values are not chosen in advance,



but instead are estimated, By, , By, and B,lp will tend to overstate the evidence for a modifi-
cation. The average Bayes factors B,., B; and By are preferable in this case, because they take
into account the fact that the link parameters are unknown and thus take link uncertainty
into account. For example, the ratio % will compare a both tails modification to a right tail
one. In a similar fashion we can assess the evidence for one link family against another one
given the same or different set of independent variables.

To complete the specification of these Bayes factors, we have to select appropriate prior
distributions for the regression parameters given a model with a specified link parameter as
well as the prior distribution to be used for the link parameter to construct overall Bayes
factors for a GLM with a specified link family.

For the prior distribution of the regression parameters 3, in the model M, we use
the reference proper prior distributions suggested by Raftery (1996) for GLM’s, since for
fixed values of the link parameter v we remain in the class of ordinary GLM’s. These prior
distributions assume little prior information. They are based on adjusted dependent variables
to mimic the behavior for ordinary linear regression models. For a (p + 1)-dimensional 3,

including an intercept, we use the prior

,3¢\Mw ~ Np+1(’vw,QwUQip)a (3-6)

where N,(u,Y) denotes a p-dimensional normal distribution with mean vector p and co-
variance matrix X. To specify the quantities in (3.6), the adjusted dependent variable
2V = gy (i) + (yi — /l;p)g{/)(/lf) with weights w? (McCullagh and Nelder (1989), p.40) has
to be considered. Here /i¥ denotes the MLE of the ith mean response in the GLM with link
parameter 9, and gy(-) is the inverse of F'(-,1). Define the weighted summary statistics:

_ S iz " S wi (2 —2y)?
ZT/) = ﬁ and S = . m (37)
>t Wi Din1 Wi
—w 2?21 wﬁ”fvij v Ziﬂ:1 w?(mij - T;/))Q .
= &= ' Y and s’ = y J=1---,p (3.8)
J n P J n P
D iy Wi D i1 W
Then the prior mean is specified as 'v;p = (Zy,0,---,p)’, U denotes a diagonal matrix with



diagonal entries given by (1,07,---,07) and

T T @ _T ]
4 T 5
0 7 0 0
( 3 1
Qy=35,10 0 7 0
: 1
I 0 O 0 7

It remains to specify ai. The arguments of Raftery (1996) and subsequent, experience using
Bayes factors for GLM’s (e.g. Viallefont et al. (1998)) suggests using the value o2 = 1.

For the prior distribution of the link parameter 1) we use a normal prior centered at
the link parameter value corresponding to the canonical link. In particular, for the link
family with specification (2.3) or (2.4) we use a normal prior with mean 1 and standard
deviation oy, while for the bivariate specification (2.2) involving ¥ = (1/1,12), we assume
independence of the components and proceed as in the univariate specifications. Numerical
experience with this particular link family suggests that o, = 2 is a reasonable choice.

To approximate the Bayes factors By, of (3.1) we use the Laplace approximation for Bayes

factors for GLM’s given in Raftery (1996), namely
2log By ~ xj, + (Ey — Eo), (3.9)

where x7, = dev(M.) — dev(My). Here dev(M) denotes the deviance of model M. Let F,
denote the observed or expected Fisher information matrix at the MLE Bw in the model

My. Then Ey in equation (3.9) is given by
Ey = log|Gy| — (B, — vy)'Cy(B, — vy) — log|Fy + Gy, (3.10)
where Gy = (QuUQ;,)~" is the inverse of the prior variance in (3.6) and Cy, is defined as
Cy = Gy{I — Hy(2I — FyH,)Gy}, where Hy = (Fy + Gy) ™.

Finally, Ey is equal to Ey, where v is taken to be the value corresponding to the canonical
link. Equation (3.10) corresponds to equation (9) in Raftery (1996).
To calaculate approximations to the overall Bayes factors specified in (3.3)-(3.5) we use

the above approximation and numerically integrate out 1 using the prior specifications for

.



4. Applications
4.1 Beetle Mortality

Bliss (1935) recorded the number of insects dead after five hours’ exposure to gaseous
carbon disulphide at various concentrations and the data are presented in Table 2. This is
a well known data set and has been often used to show the usefulness of a different link
function other than the logistic one. In particular, the residual deviance for a logistic model

with a centered log dose covariate is 11.23 with 6 degrees of freedom, suggesting a lack of fit.
[Table 1 about here.]
[Figure 1 about here.|

Figure 1 gives the deviance profiles and contours, when the link families (2.2)-(2.4) are
used for binomial regression. They show clearly that a tail modification in this data set
is useful and improves the fit. We will now use Bayes factors to decide which specific
tail modification is needed. We use the prior specification (3.6) with 0, = 1 and normal
independent priors for vy with prior standard deviation o, = 2. Figure 2 shows the Bayes
factors By, as a function of ¢ and in Table 3 the overall Bayes factors for each tail modification

family are given together with minimal deviances and maximal individual Bayes factors B,;.
[Figure 2 about here.]
[Table 2 about here.]

From this we conclude that the Bayes factors clearly favors a right tail modification over
a left or both tail modification. While the likelihood ratio test can be used to show that
the reduction in deviance achieved by using a both tail modification over a right/or left
tail modification is insignificant, we cannot compare right and left tail modifications, since
they are not nested models. Graphically, we see that in Figure 1, the lines determining the
point (1,1) (corresponding to logistic link) intersect the confidence regions suggesting that
single tail modifications are sufficient. We can also see from Table 3 that the maximal Bayes
factors, corresponding to estimated values of ; and 1), overestimate the evidence for a
modification quite substantially.

This data set has also been considered by Collett (1991) p. 108-112, who allowed for the
inclusion of a quadratic term on the original C'Ss scale in a logistic model. This yields a

residual deviance of 3.08 with 5 degrees of freedom. We can now use Bayes factors to decide



if the right tail link fit is preferable over the inclusion of a quadratic term on the original
C'S, scale. Note these models are again nonnested. The corresponding Bayes factor is given
by

Pr¥ | My, 1ociontes) 116,66 % 0011 = 1280 = ——.
Pr(Y My, —12—(cs,,052)) 7.80

By, —1.99 X

This shows that a logistic model using a quadratic term on the original scale is favored over a
right tail link family. Collett (1991) p. 140 noted that a complementary log-log model for the
link parameter fits the data as well as the logistic model using a quadratic term. He argued
that the complementary log-log model would be preferable since it has fewer parameters,

but this ignores the uncertainty in the choice of link function.

4.2 Rotifer Suspension

The following example is taken from Collett (1991). It involves the number of rotifers
falling out of suspension for two species, called polyartha major and keratella cochlearis for
different fluid densities; the data are given in Table 6.10 in Collett (1991), p. 217. For the
binary regression models considered below species were coded by 1 for polyartha major and
0 for keratella cochlearis and a centered covariate for density x 100 was used.

In this data set we have in addition to the link choice the problem of deciding whether or
not to include an interaction term between species and density. A logistic regression analysis
gives a residual deviance of 434.25 on 37 degrees of freedom for a model including no interac-
tion term, while a model including an interaction term yields a residual deviance of 434.01 on
36 degrees of freedom. This indicates a severe lack of fit and shows that an interaction term
is not needed if only a logistic link is allowed. Therefore, this raises the question whether
an interaction term would improve the fit when links other than the logistic are considered.
So we consider six model classes corresponding to the three possible tail modifications and
the two choices for set of covariates. Figures 3 and 4 present the corresponding deviance
profiles and contours. This suggests that the inclusion of an interaction term decreases the
residual deviance substantially. Further, a both tail modification substantially improves the
fit, which can be seen since the lines determining the logistic link (¢» = (1,1)) do not inter-
sect with the confidence regions. This was also noted by Czado (1994b) who conducted a
fully Bayesian analysis of this data set using Markov Chain Monte Carlo methods for joint

inference on regression parameters and link parameters.

[Figure 3 about here.]
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[Figure 4 about here.]

Figures 5 and 6 present the approximate Bayes factors By as a function of 1, and in
Table 4 the overall Bayes factors for each tail modification family and covariate set are given

together with minimal deviances and maximal individual Bayes factors By:
[Figure 5 about here.]
[Figure 6 about here.]
[Table 3 about here.]

The overall log Bayes factors for the both tail modification is the largest for the model
including an interaction term. Comparing whether the inclusion of an interaction term is
warranted for a both tail modification we can see that the log Bayes factor for an interac-
tion is 76.84 — 67.24 = 9.6, which corresponds to strong evidence for an interaction. Note
that a conventional GLM analysis such as that of Collett (1991) would miss this important

interaction.

5. Discussion

We have presented a Bayesian approach to model selection in GLM’s with parametric link
using Bayes factors to account for structural model uncertainty (see Draper (1995)) such
as the choice of link in a GLM. This involves a continous model expansion over ordinary
GLM’s when a particular link family was considered as well as a discrete model expansion
when different link families were compared. In addition we were able to jointly assess the
choice of link together with the choice of the set of independent parameters to include in
the model. This involves the comparison of nonnested models, which cannot be carried out
using classical model selection strategies based on significance tests.

We used reference proper priors for the regression parameters of a GLM with a fixed link
function as suggested by Raftery (1996). These priors vary with the link parameter, reflecting
the fact that the regression parameters are on different scales for different link functions. This
reference proper prior avoids the problem of Bartlett’s (Bartlett (1957)) or Lindley’s (Lindley
(1957)) paradox and thus in this case Bayes factors have the advantage over posterior Bayes
factors (Aitkin (1991)), p-values or the AIC criterion that they correctly identify the correct
model in large samples, while the other criteria do not (Schwartz (1978)). Finally, the Bayes

factors were approximated using the Laplace approximations given in Raftery (1996).
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A complete Bayesian analysis of a GLM’s with a parametric link is computer intensive,
since the calculation of posterior distributions involve Markov Chain Monte Carlo methods
(Czado (1994a)). The methods presented in this paper can be used for a final analysis, or
could be used to screen for plausible models, which could then be used as starting points
for a complete Bayesian analysis. Note our methods for calculating these Bayes factors only
requires software which is able to fit a GLM with an arbitrary link. In particular, joint
maximization over regression parameters and link parameters to determine the maximum
likelihood estimator is not needed. Here, calculations were conducted in S-Plus using the
glm() function together with integration functions in one or two dimensions.

It should be noted that Bayes factors give summary statistics for the fit of a particular
model or model class. For inference about model independent quantities such as the log odds
ratio of a treatment effect or the mean response at a particular value of the independent
variables techniques such as Bayesian model averaging (see for example Hoeting et al. (1999))
or MCMC methods to compute posterior quantities are required. This also allows a Bayesian
alternative to the quantifications of change to quantities of interest when changing from a
GLM with canonical link to one with noncanonical link. This was the goal of a paper by
Czado and Munk (2000).
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Table 1
Beetle Mortality Data

Y; n; Dose
Number killed | Number of Insects | log;o CSamgl™?!
6 59 1.6907
13 60 1.7242
18 62 1.7552
28 56 1.7842
52 63 1.8113
53 59 1.8369
61 62 1.8610
60 60 1.8839
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Table 2
Approzimate Bayes Factors and Deviances for the Beetle Mortality Data (0, = 1,04 = 2)

Model | Minimal (¢7,19) df Maximal (¢1,12) Overall

Deviance Bayes Factor Bayes Factor
Right 3.96 (1.92,—) 5 116.66 (1.99,—) 20.61
Left 3.04 (—,.16) 5 46.41  (—,.21) 5.07
Both 281 (1.2,.3) 4 123.89 (1.8,.8) 5.38
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Table 3
Approximate Log Bayes Factors and Deviances for the Rotifer Suspension Data

(O'p:].,O'w:z)

Model Minimal  (¢1,12) df| Maximal  (¢1,9) Overall
Deviance Log Bayes Log Bayes
Factor Factor
Right Tail
no interaction 422.8 (1.3,—) 36 5.8 (1.3,-) 2.91
interaction 396.9 (2.08,—) 35 19.1  (1.3,-) 16.74
Left Tail
no interaction 353.1 (—,.4) 36 39.6 (—,.07) 36.03
interaction 2877  (—,.07) 35 7.3 (—,.07) 67.87
Both Tails
no interaction 273.7  (.1,-.2) 35 746 (.2,-.1) 67.24
interaction 255.0 (.35,—.1) 34 83.6 (.35,—.1) 76.84
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